41001 Modern Applied Machine Learning a.y. 2021-22

PhD in Statistics & Computer Science, Bocconi University Instructor: Carlo Lucibello

The course aims at giving a broad understanding of state-of-the-art deep learning techniques and their applications. We will overview both the theoretical aspects and the practical details. The code examples will be given in the Julia programming language.

Prerequisites

- Bring your laptop to the lectures.
- Familiarity with the Julia programming language.
- Intermediate level Calculus and basic Probability.
- Basic Machine Learning.

Bibliography

Lecture notes, papers, and code will be presented during the course.

Lectures

- Intro on Learning Frameworks (2h Lesson 1)
 - Supervised, unsupervised, self-supervised, semi-supervised, reinforcement learning, active learning, transfer learning, one or few shot learning, continual learning
 - Perceptron algorithm
- Deep Leaning Basics (6h Lesson 2-5)
 - Multilayer perceptron (1h)
 - Backpropagation, AD (1h)
 - Flux.jl Tutorials (2h)
 - Signal Propagation in deep net (Ganguli et al.) (2h)
- CNN (2h Lesson 5)
 - BatchNorm, Dropout
 - ResNets
 - UNet
- Geometric Deep Learning (4h Lesson 6-7)
 - Symmetries
 - Graph Neural Networks
 - Applications and code examples
- Generative Models (6h Lesson 8-10)
 - VAE (1h)
 - Application to Protein modeling
 - GAN (1h)
 - Autoregressive networks (2h)
 - Solving Stat. Mech.
 - Normalizing Flows (1h)

- Energy Based Models (1h)
- Reinforcement Learning (4h Lesson 11-12)
 - Q-Learning (1h)
 - Policy Gradient (1h)
 - AlphaZero and MCTS (1h)
- NeuralODE and ScientificML (4h Lesson 13-14)
- Natural Language Processing (2h Lesson 15)
 - Attention mechanism
 - Transformers

Grading

Grading will be based on a deep learning project, to be approved in advance by the instructor. There are a few different options available.

Option 1: Personal Project

Apply deep learning techniques to your research work. The code has to be made publicy available in a GitHub repo.

Option 2: Replicate Published Paper

Replicate the result of some paper whose code is not yet available in julia. The code has to be made publicy available in a GitHub repo.

Option 3: Contribute to the Julia ecosystem

Make some relevant contribution to the Julia ML ecosystem: Flux.jl, FluxML/model-zoo, Zygote.jl, Transformers.jl, GraphNeuralNetworks.jl, SciML org, Turing.jl, MLJ org,